Billions Served:
Processing Security
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Serverless Stack
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Who, Me

-~ 10 years of security industry experience

- Security Engineer & Tech Lead at Brex
- Previously: Splunk, Target, CrowdStrike
> @ making life more difficult for bad guys



The Worst Kept Secret in
Security Operations...




Eventually Everyone
Becomes a Data Engineer




1ndex=+* source=auth
eval user_name=mvindex(split(email, "@"), 0)
eval user _domain=mvindex(split(email, "@"), -1)
join type=inner [ search index=* source=users
dedup user_name
fields user_name, full_name, department, title ]
On user._name
| table ts, 1d, 1p, user_name, user_domailn,
full _name, department, title




SELECT
a.ts,
a.id,
a.1lp,
SUBSTRING INDEX(a.email, , 1) AS user_name,
SUBSTRING INDEX(a.email, , -1) AS user _domain,
u.full name,
u.department
u.title
FROM auth a
JOIN users u ON u.user_name =
SUBSTRING INDEX(a.email, 1)




How did this happen, and
can we make it better?
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Managing Data with
Substation




github.com/brexhq/substation

Substation is a cloud-native, event-driven data
pipeline and transformation toolkit written in Go.

- Designed for Security Operations teams

- Bullt by Detection and Response at Brex



"eventVersion": "1.08",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AROAS5AFBLNG2RLOZNWEQ:anonymousaexample.com",
"arn": "arn:aws:sts::987654321012:assumed-role/AWSReservedSSO_ACCOUNT_87654321/anonymousaexample.com",
"accountId": "987654321012",
"sessionContext": { ... }

|

"eventTime": "2023-05-16T21:47:257",
"eventSource": "signin.amazonaws.com",
"eventName": "ConsolelLogin",
"awsRegion": "us-east-1",

"sourceIPAddress": "192.0.2.0",

"userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"requestParameters”: null,

"responseElements": {

"ConsoleLogin": "Success"

b

"additionalEventData": {
"MobileVersion": "No",
"MFAUsed": "No"

b,

"eventID": "130e6elb-4753-4080-a398-07dc9fb53ch0",

"readOnly": false,

"eventType": "AwsConsoleSignIn",

"managementEvent": true,

"recipientAccountId": "987654321012",

"eventCategory": "Management",

"tlsDetails": {
"tlsVersion": "TLSv1.3",
"cipherSuite": "TLS_AES_128 GCM_SHA256",
"clientProvidedHostHeader": "us-east-1.signin.aws.amazon.com

}
}



"Qtimestamp": "2023-05-16T21:47:2572",
"event": {
"action": "ConsolelLogin",
"id": "130e6e1b-4753-4080-a398-07dc9fb53cb0",
"hash": "2c0866a6957af6d6d3836b740b0ab6d7b43a2f57398e74f26c7a2efl1lel1718f972",
"original": { ... },

"outcome": "success"
},
"cloud": {
"account": {
"id": "987654321012",
"name": "Development"
b,
"provider": "aws",
"region": "us-east-1",
"service": {
"name": "signin"
}
}

?
ource": {
"ip": "192.0.2.0",

"domain": "c-192-0-2-0.hsdl.ca.comcast.net”,
"as": {
"organization": {
"name": "Comcast Cable Communications, LLC"
b,
"number": 7922
}
b
"tls": {
"cipher": "TLS_AES_128 GCM_SHA256"
b,
"user": {
"email": "anonymousaexample.com",
"full_name": "Jane Doe",
"roles": [ "admin", "security" ]
b

"user_agent": {
"original": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
}
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github.com/brexhq/substation

- Used In production for 2+ years
- 1,000,000,000s of events processed per day
- 1,000,000s of transtorms executed every second
- S0.01/GB to S0.05/GB (all-in cost)
- <1 hour maintenance each week






Optimizing the AWS
Serverless Stack




Optimizing Lambda - Parallelism

> Event source - Parallelization - Multl-
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Optimizing Lambda - Parallelism

Tip: Use multi-threading for 1/0 bound tasks
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Optimizing Lambda - Parallelism

Use Case: Enrich event logs with external services

> DNS > HTTP - Lambda
> [P<>Domalin > Location > Internal APIs

- TXT records - Reputation - Custom data

> Intelligence Processing



Optimizing Lambda - More Tips

> More memory, more vCPU (1770MB = 2 vCPU)
- Keep local enrichment data in memory
- Lazy load external resources once
- Monitor API calls and performance with X-Ray

- Use AppConfig to continuously retrieve
configurations and avoid cold starts




Optimizing Kinesis - Aggregation

Tip: Use the Kinesis Producer & Consumer Libraries

- Aggrega

INncrease t

e r

110

nany events into a single record to

ughput and significantly reduce cost

-> Formats: Protobuf (KPL, KCL), JSON arrays,
compression ... nearly anything works!




Optimizing Kinesis - Aggregation

Size x Events Kinesis Data Streams Kinesis Firehose Kinesis Data Streams Managed Streaming
Per Second (EPS) (Provisioned) (On-Demand) Kafka (MSK)’

1KB x 10k S17/day S119/day S100/day S48/day

(10 MB/s)

1KB x 100k S174/day $1094/day $987/day $373/day

(100 MB/s)

5KB x 20k S77/day S238/day S987/day S373/day

(100 MB/s)

25KB x 4k S58/day $238/day $987/day $373/day

(100 MB/s)

"Cluster settings: mb5.large, 3 replicas & AZs, 24 hours of retention



Kinesis Data Streams

- 3+ Consumers: ~10%
INcrease each cons.

- Enhanced Consumer:
S0.013/GB + S0.015/sh

-> Extended (7-Day)

Retention: S0.0068/GB

Optimizing Kinesis - Additional Costs

Kinesis Firehose

S0.0
- Data Co

- Dynamic Partitioning:

2/GB
NVersion:

S0.0°

S0.0

8/GB

- VPC (PrivateLink):

1/GB



Optimizing Kinesis - More Tips

- Batch size and window affects Lambda cost

- Avold hot shards with random partition keys

- Use auto-scaling; scale up quick and down
> Bursts of records will cause errors on wr

ite,

slow

increase retries and exponential backo
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Optimizing DynamoDB - Distributed Cache

Tip: Use DynamoDB as a distributed
cache for enrichment data

- Use cache aside pattern to improve performance
- Keep data fresh with configurable time-to-live
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Optimizing DynamoDB - Distributed Cache

Use Case: Any event log can become context

- Data-Driven - Cache AP| - Share Data
Inventories Responses Setween
> Indicators of = Curate Biz & Services
Compromise Threat Intel - Share Info
ACross

Teams



Optimizing DynamoDB - More Tips

- Practice single-table design

- Use Provisioned capacity with auto-scaling

- Retrieve all data for an entity in one query

- Use In-memory cache to reduce query volume

-> Use hash f
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Serverless Gotchas - Continuous Retries

Tip: Use Lambda's continuous retries carefully

- Polling event sources retry until data expires

-> Duplicates data and costs will #

- Use CloudWatch to alert on errors or
use dead letter queues




Serverless Gotchas - Backpressure

Tip: Don't under-provision downstream services

- Security event logs will burst: backpressure
and delayed processing Is a risk

- Use auto-scaling features or deploy
custom auto-scaling applications




Serverless Gotchas - Bottlenecks

Tip: ~/ Lambda Duration and IteratorAge metrics
can identify bottlenecks

- Lambda: iIncrease memory or p. factor
- Kinesis: Increase shard count
- DynamoDB: increase read or write capacity



Thanks for Listening!

- Reach out on LinkedIn
linkedin.com/in/joshliburdi
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Resources - Lambda

- Operating Lambda: Performance optimization
(Parts 1, 2, 3) by James Beswick

-> Optimizing your AWS Lambda costs (Parts 1 & 2)
by Chris Willlams & Thomas Moore

- Caching data and configuration settings with AWS
Lambda extensions by Hari Ohm Prasath
Rajagopal & Vamsi Vikash Ankam



Resources - Kinesis

- Kinesis vs. Kafka: Which Stream Processor Comes
Out on Top? by Alex Chan

- Mastering AWS Kinesis Data Streams
(Parts 1 & 2) by Anahit Pogosova

- Amazon Kinesis Data Streams: Auto-scaling the
number of shards by Brandon Stanley



Resources - DynamoDB

-~ Best practices for designing and architecting with
DynamoDB (AWS docs)

- The What, Why, and When of Single-Table Design
with DynamoDB by Alex DeBrie

- Maximize cost savings and scalability with an
optimized DynamoDB secondary index by Pete
Naylor



