
Billions Served:
Processing Security

Event Logs with the AWS
Serverless Stack

fwd:cloudsec 2023, Josh Liburdi

Who, Me?
!

→ 10 years of security industry experience
→ Security Engineer & Tech Lead at Brex
→ Previously: Splunk, Target, CrowdStrike

→

❤

 making life more difficult for bad guys

The Worst Kept Secret in
Security Operations...

Eventually Everyone
Becomes a Data Engineer

index=* source=auth
| eval user_name=mvindex(split(email, "@"), 0)
| eval user_domain=mvindex(split(email, "@"), -1)
| join type=inner [search index=* source=users
 | dedup user_name
 | fields user_name, full_name, department, title]
 on user_name
| table ts, id, ip, user_name, user_domain,
 full_name, department, title

SELECT
 a.ts,
 a.id,
 a.ip,
 SUBSTRING_INDEX(a.email, '@', 1) AS user_name,
 SUBSTRING_INDEX(a.email, '@', -1) AS user_domain,
 u.full_name,
 u.department
 u.title
FROM auth a
JOIN users u ON u.user_name =
 SUBSTRING_INDEX(a.email, '@', 1);

How did this happen, and
can we make it better?

Data Engineering?
!

Data Engineering!
!

Managing Data with
Substation

github.com/brexhq/substation
Substation is a cloud-native, event-driven data

pipeline and transformation toolkit written in Go.
→ Designed for Security Operations teams
→ Built by Detection and Response at Brex

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAS5AFBLNG2RLOZNWEQ:anonymous@example.com",
 "arn": "arn:aws:sts::987654321012:assumed-role/AWSReservedSSO_ACCOUNT_87654321/anonymous@example.com",
 "accountId": "987654321012",
 "sessionContext": { ... }
 },
 "eventTime": "2023-05-16T21:47:25Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Success"
 },
 "additionalEventData": {
 "MobileVersion": "No",
 "MFAUsed": "No"
 },
 "eventID": "130e6e1b-4753-4080-a398-07dc9fb53cb0",
 "readOnly": false,
 "eventType": "AwsConsoleSignIn",
 "managementEvent": true,
 "recipientAccountId": "987654321012",
 "eventCategory": "Management",
 "tlsDetails": {
 "tlsVersion": "TLSv1.3",
 "cipherSuite": "TLS_AES_128_GCM_SHA256",
 "clientProvidedHostHeader": "us-east-1.signin.aws.amazon.com"
 }
}

{
 "@timestamp": "2023-05-16T21:47:25Z",
 "event": {
 "action": "ConsoleLogin",
 "id": "130e6e1b-4753-4080-a398-07dc9fb53cb0",
 "hash": "2c0866a6957af6d6d3836b740b0a6d7b43a2f57398e74f26c7a2ef1e1718f972",
 "original": { ... },
 "outcome": "success"
 },
 "cloud": {
 "account": {
 "id": "987654321012",
 "name": "Development"
 },
 "provider": "aws",
 "region": "us-east-1",
 "service": {
 "name": "signin"
 }
 },
 "source": {
 "ip": "192.0.2.0",
 "domain": "c-192-0-2-0.hsd1.ca.comcast.net",
 "as": {
 "organization": {
 "name": "Comcast Cable Communications, LLC"
 },
 "number": 7922
 }
 },
 "tls": {
 "cipher": "TLS_AES_128_GCM_SHA256"
 },
 "user": {
 "email": "anonymous@example.com",
 "full_name": "Jane Doe",
 "roles": ["admin", "security"]
 },
 "user_agent": {
 "original": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
 }

github.com/brexhq/substation
→ Used in production for 2+ years

→ 1,000,000,000s of events processed per day
→ 1,000,000s of transforms executed every second

→ $0.01/GB to $0.05/GB (all-in cost)
→ <1 hour maintenance each week

Optimizing the AWS
Serverless Stack

Optimizing Lambda - Parallelism
→ Event source

determines
concurrency

→ 1-1: S3, SNS,
API Gateway
→ N-1: SQS,

Kinesis,
DynamoDB

→ Parallelization
Factor invokes

up to 10x
functions per

batch
→ Kinesis &

DynamoDB
only

→ Multi-
threaded
functions
can have

perf. boost
depending
on use case

Optimizing Lambda - Parallelism
Tip: Use multi-threading for I/O bound tasks
→ Data transformation is usually CPU bound,

but becomes I/O bound when enriching data
→ Thread pool can improve application
performance and reduce overall runtime

Optimizing Lambda - Parallelism
Use Case: Enrich event logs with external services

→ DNS
→ IP<>Domain
→ TXT records

→ HTTP
→ Location
→ Reputation
→ Intelligence

→ Lambda
→ Internal APIs
→ Custom data

processing

Optimizing Lambda - More Tips
→ More memory, more vCPU (1770MB = 2 vCPU)
→ Keep local enrichment data in memory
→ Lazy load external resources once

→ Monitor API calls and performance with X-Ray
→ Use AppConfig to continuously retrieve

configurations and avoid cold starts

Optimizing Kinesis - Aggregation
Tip: Use the Kinesis Producer & Consumer Libraries
→ Aggregate many events into a single record to
increase throughput and significantly reduce cost
→ Formats: Protobuf (KPL, KCL), JSON arrays,

compression ... nearly anything works!

Optimizing Kinesis - Aggregation
Size x Events
Per Second (EPS)

Kinesis Data Streams
(Provisioned)

Kinesis Firehose Kinesis Data Streams
(On-Demand)

Managed Streaming
Kafka (MSK)1

1KB x 10k
(10 MB/s)

$17/day $119/day $100/day $48/day

1KB x 100k
(100 MB/s)

$174/day $1094/day $987/day $373/day

5KB x 20k
(100 MB/s)

$77/day $238/day $987/day $373/day

25KB x 4k
(100 MB/s)

$58/day $238/day $987/day $373/day

1 Cluster settings: m5.large, 3 replicas & AZs, 24 hours of retention

Optimizing Kinesis - Additional Costs
Kinesis Data Streams
→ 3+ Consumers: ~10%

increase each cons.
→ Enhanced Consumer:

$0.013/GB + $0.015/sh
→ Extended (7-Day)
Retention: $0.0068/GB

Kinesis Firehose
→ Dynamic Partitioning:

$0.02/GB
→ Data Conversion:

$0.018/GB
→ VPC (PrivateLink):

$0.01/GB

Optimizing Kinesis - More Tips
→ Batch size and window affects Lambda cost
→ Avoid hot shards with random partition keys

→ Use auto-scaling; scale up quick and down slow
→ Bursts of records will cause errors on write,

increase retries and exponential backoff

Optimizing DynamoDB - Distributed Cache
Tip: Use DynamoDB as a distributed

cache for enrichment data
→ Use cache aside pattern to improve performance
→ Keep data fresh with configurable time-to-live

Optimizing DynamoDB - Distributed Cache
Use Case: Any event log can become context

→ Data-Driven
Inventories

→ Indicators of
Compromise

→ Cache API
Responses

→ Curate Biz &
Threat Intel

→ Share Data
Between
Services

→ Share Info
Across
Teams

Optimizing DynamoDB - More Tips
→ Practice single-table design

→ Use Provisioned capacity with auto-scaling
→ Retrieve all data for an entity in one query

→ Use in-memory cache to reduce query volume
→ Use hash functions on large partition keys and

sort keys, store large items in S3

Serverless Gotchas - Continuous Retries
Tip: Use Lambda's continuous retries carefully
→ Polling event sources retry until data expires

→ Duplicates data and costs will

!

→ Use CloudWatch to alert on errors or
use dead letter queues

Serverless Gotchas - Backpressure
Tip: Don't under-provision downstream services
→ Security event logs will burst: backpressure

and delayed processing is a risk
→ Use auto-scaling features or deploy

custom auto-scaling applications

Serverless Gotchas - Bottlenecks
Tip:

!
 Lambda Duration and IteratorAge metrics

can identify bottlenecks
→ Lambda: increase memory or p. factor

→ Kinesis: increase shard count
→ DynamoDB: increase read or write capacity

Thanks for Listening!
→ Reach out on LinkedIn
linkedin.com/in/joshliburdi

→ Read on for resources that
can help you optimize Lambda,

Kinesis, and DynamoDB!

Resources - Lambda
→ Operating Lambda: Performance optimization

(Parts 1, 2, 3) by James Beswick
→ Optimizing your AWS Lambda costs (Parts 1 & 2)

by Chris Williams & Thomas Moore
→ Caching data and configuration settings with AWS

Lambda extensions by Hari Ohm Prasath
Rajagopal & Vamsi Vikash Ankam

Resources - Kinesis
→ Kinesis vs. Kafka: Which Stream Processor Comes

Out on Top? by Alex Chan
→ Mastering AWS Kinesis Data Streams

(Parts 1 & 2) by Anahit Pogosova
→ Amazon Kinesis Data Streams: Auto-scaling the

number of shards by Brandon Stanley

Resources - DynamoDB
→ Best practices for designing and architecting with

DynamoDB (AWS docs)
→ The What, Why, and When of Single-Table Design

with DynamoDB by Alex DeBrie
→ Maximize cost savings and scalability with an

optimized DynamoDB secondary index by Pete
Naylor

