Billions Served:
Processing Security
Event Logs with the AWS

Serverless Stack
fwd:cloudsec 2023, Josh Liburdi

SO
P N

\N

Who, Me

-~ 10 years of security industry experience

- Security Engineer & Tech Lead at Brex
- Previously: Splunk, Target, CrowdStrike
> @ making life more difficult for bad guys

The Worst Kept Secret in
Security Operations...

Eventually Everyone
Becomes a Data Engineer

1ndex=+* source=auth
eval user_name=mvindex(split(email, "@"), 0)
eval user _domain=mvindex(split(email, "@"), -1)
join type=inner [search index=* source=users
dedup user_name
fields user_name, full_name, department, title]
On user._name
| table ts, 1d, 1p, user_name, user_domailn,
full _name, department, title

SELECT
a.ts,
a.id,
a.1lp,
SUBSTRING INDEX(a.email, , 1) AS user_name,
SUBSTRING INDEX(a.email, , -1) AS user _domain,
u.full name,
u.department
u.title
FROM auth a
JOIN users u ON u.user_name =
SUBSTRING INDEX(a.email, 1)

How did this happen, and
can we make it better?

Data Engineering?

Server

Extract Data

Security Platform

Data

Transform

»| Load Data

Data Engineering! &

Server

Extract Data

???

Transform

Data

»| Load Data

Security Platform

Managing Data with
Substation

github.com/brexhq/substation

Substation is a cloud-native, event-driven data
pipeline and transformation toolkit written in Go.

- Designed for Security Operations teams

- Bullt by Detection and Response at Brex

"eventVersion": "1.08",
"userIdentity": {
"type": "AssumedRole",
"principalId": "AROAS5AFBLNG2RLOZNWEQ:anonymousaexample.com",
"arn": "arn:aws:sts::987654321012:assumed-role/AWSReservedSSO_ACCOUNT_87654321/anonymousaexample.com",
"accountId": "987654321012",
"sessionContext": { ... }

|

"eventTime": "2023-05-16T21:47:257",
"eventSource": "signin.amazonaws.com",
"eventName": "ConsolelLogin",
"awsRegion": "us-east-1",

"sourceIPAddress": "192.0.2.0",

"userAgent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"requestParameters”: null,

"responseElements": {

"ConsoleLogin": "Success"

b

"additionalEventData": {
"MobileVersion": "No",
"MFAUsed": "No"

b,

"eventID": "130e6elb-4753-4080-a398-07dc9fb53ch0",

"readOnly": false,

"eventType": "AwsConsoleSignIn",

"managementEvent": true,

"recipientAccountId": "987654321012",

"eventCategory": "Management",

"tlsDetails": {
"tlsVersion": "TLSv1.3",
"cipherSuite": "TLS_AES_128 GCM_SHA256",
"clientProvidedHostHeader": "us-east-1.signin.aws.amazon.com

}
}

"Qtimestamp": "2023-05-16T21:47:2572",
"event": {
"action": "ConsolelLogin",
"id": "130e6e1b-4753-4080-a398-07dc9fb53cb0",
"hash": "2c0866a6957af6d6d3836b740b0ab6d7b43a2f57398e74f26c7a2efl1lel1718f972",
"original": { ... },

"outcome": "success"
},
"cloud": {
"account": {
"id": "987654321012",
"name": "Development"
b,
"provider": "aws",
"region": "us-east-1",
"service": {
"name": "signin"
}
}

?
ource": {
"ip": "192.0.2.0",

"domain": "c-192-0-2-0.hsdl.ca.comcast.net”,
"as": {
"organization": {
"name": "Comcast Cable Communications, LLC"
b,
"number": 7922
}
b
"tls": {
"cipher": "TLS_AES_128 GCM_SHA256"
b,
"user": {
"email": "anonymousaexample.com",
"full_name": "Jane Doe",
"roles": ["admin", "security"]
b

"user_agent": {
"original": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
}

Buffer events
before writing
to S3 bucket

HTTPS
Gateway

Stream Transform

&0

Publisher pic

Build notification
systems using SNS

Subscriber

Subscriber

Subscriber

Subscriber

Gateway

Sink Bucket
—1
Sink Table

Replicate data
from DynamoDB

HTTPS

Enrich data
with Lambda

Stream

Microservice

Queue

Transform

AR

Stream Transform
Share
information
across data
pipelines Transform
Stream Transform

Stream Transform

Divide events

Transform Stream Sink

Enrich data with

Table

_>E&%
Security
Engineers

On-Prem
Servers

Microservice

-©

Deploy
. . External
en?erprlse ywde Cloud
microservices Service
Providers

SIEM
b P itself using
SIEM and W DynamoDa
ink
data lake >in
Transform

Real-time or <l s Redistribute

bulk transfer data across

data between Kinesis

S3 buckets Transform Bucket streams Stream

Transform

Stream

github.com/brexhq/substation

- Used In production for 2+ years
- 1,000,000,000s of events processed per day
- 1,000,000s of transtorms executed every second
- S0.01/GB to S0.05/GB (all-in cost)
- <1 hour maintenance each week

Optimizing the AWS
Serverless Stack

Optimizing Lambda - Parallelism

> Event source - Parallelization - Multl-

determines ~actor Invokes threaded
concurrency up to 10X functions

5 11 S3 SNS functions per can have
AP Ga'tevvag/ batch perf. boost

3 N-T SQS -> Kinesis & depe’ldlng
1 I, DvnamoDB Oon use case

Kinesis. y

DynamoDB only

Shard

Shard

-—

| —

| Application

L_—»
Application

r— el
Application

|

I

L —

Application

r — -
I
Thread
Pool o _{
I
L »
r— -
I
Thread
Pool T _{
I
L »
r— -
I
Thread
Pool T _{
I
L »
r— -
I
Thread
Pool o _{
I
L

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Optimizing Lambda - Parallelism

Tip: Use multi-threading for 1/0 bound tasks

- Da
but

- Thread pool can improve applicati
performance and rec

a transformation i1s usually CPU bound,
necomes |/O bound when enriching data

O

Jce overall runti

ﬁ

me

Optimizing Lambda - Parallelism

Use Case: Enrich event logs with external services

> DNS > HTTP - Lambda
> [P<>Domalin > Location > Internal APIs

- TXT records - Reputation - Custom data

> Intelligence Processing

Optimizing Lambda - More Tips

> More memory, more vCPU (1770MB = 2 vCPU)
- Keep local enrichment data in memory
- Lazy load external resources once
- Monitor API calls and performance with X-Ray

- Use AppConfig to continuously retrieve
configurations and avoid cold starts

Optimizing Kinesis - Aggregation

Tip: Use the Kinesis Producer & Consumer Libraries

- Aggrega

INncrease t

e r

110

nany events into a single record to

ughput and significantly reduce cost

-> Formats: Protobuf (KPL, KCL), JSON arrays,
compression ... nearly anything works!

Optimizing Kinesis - Aggregation

Size x Events Kinesis Data Streams Kinesis Firehose Kinesis Data Streams Managed Streaming
Per Second (EPS) (Provisioned) (On-Demand) Kafka (MSK)’

1KB x 10k S17/day S119/day S100/day S48/day

(10 MB/s)

1KB x 100k S174/day $1094/day $987/day $373/day

(100 MB/s)

5KB x 20k S77/day S238/day S987/day S373/day

(100 MB/s)

25KB x 4k S58/day $238/day $987/day $373/day

(100 MB/s)

"Cluster settings: mb5.large, 3 replicas & AZs, 24 hours of retention

Kinesis Data Streams

- 3+ Consumers: ~10%
INcrease each cons.

- Enhanced Consumer:
S0.013/GB + S0.015/sh

-> Extended (7-Day)

Retention: S0.0068/GB

Optimizing Kinesis - Additional Costs

Kinesis Firehose

S0.0
- Data Co

- Dynamic Partitioning:

2/GB
NVersion:

S0.0°

S0.0

8/GB

- VPC (PrivateLink):

1/GB

Optimizing Kinesis - More Tips

- Batch size and window affects Lambda cost

- Avold hot shards with random partition keys

- Use auto-scaling; scale up quick and down
> Bursts of records will cause errors on wr

ite,

slow

increase retries and exponential backo

ii

Optimizing DynamoDB - Distributed Cache

Tip: Use DynamoDB as a distributed
cache for enrichment data

- Use cache aside pattern to improve performance
- Keep data fresh with configurable time-to-live

N
i

Stream

N
i

Stream

Distributed Cache

LH

External
Service

N

Transform

o\ =

Transform

7

Table

I\

Stream Sink

N\
Ze

N\
&

I\

Stream Sink

Stream

Transform

Stream Sink

Cache Aside
HER
|
[]
HTTPS
Service
Transform Table

Optimizing DynamoDB - Distributed Cache

Use Case: Any event log can become context

- Data-Driven - Cache AP| - Share Data
Inventories Responses Setween
> Indicators of = Curate Biz & Services
Compromise Threat Intel - Share Info
ACross

Teams

Optimizing DynamoDB - More Tips

- Practice single-table design

- Use Provisioned capacity with auto-scaling

- Retrieve all data for an entity in one query

- Use In-memory cache to reduce query volume

-> Use hash f

U

SOTIt

nctions on

ceys, store

arge

arge

nartition keys and

items In S3

Serverless Gotchas - Continuous Retries

Tip: Use Lambda's continuous retries carefully

- Polling event sources retry until data expires

-> Duplicates data and costs will #

- Use CloudWatch to alert on errors or
use dead letter queues

Serverless Gotchas - Backpressure

Tip: Don't under-provision downstream services

- Security event logs will burst: backpressure
and delayed processing Is a risk

- Use auto-scaling features or deploy
custom auto-scaling applications

Serverless Gotchas - Bottlenecks

Tip: ~/ Lambda Duration and IteratorAge metrics
can identify bottlenecks

- Lambda: iIncrease memory or p. factor
- Kinesis: Increase shard count
- DynamoDB: increase read or write capacity

Thanks for Listening!

- Reach out on LinkedIn
linkedin.com/in/joshliburdi

> Read on for resources that

can b

K]

elp you opt
nesis, and

m

DlVis

1Ize Lam

amoDB!

nda,

Resources - Lambda

- Operating Lambda: Performance optimization
(Parts 1, 2, 3) by James Beswick

-> Optimizing your AWS Lambda costs (Parts 1 & 2)
by Chris Willlams & Thomas Moore

- Caching data and configuration settings with AWS
Lambda extensions by Hari Ohm Prasath
Rajagopal & Vamsi Vikash Ankam

Resources - Kinesis

- Kinesis vs. Kafka: Which Stream Processor Comes
Out on Top? by Alex Chan

- Mastering AWS Kinesis Data Streams
(Parts 1 & 2) by Anahit Pogosova

- Amazon Kinesis Data Streams: Auto-scaling the
number of shards by Brandon Stanley

Resources - DynamoDB

-~ Best practices for designing and architecting with
DynamoDB (AWS docs)

- The What, Why, and When of Single-Table Design
with DynamoDB by Alex DeBrie

- Maximize cost savings and scalability with an
optimized DynamoDB secondary index by Pete
Naylor

